

Description

The LKS523 is a high voltage, high speed half-bridge pre-driver for power MOSFET and IGBT. It has inputs for both high side and low side, and two output channels with internal dead time to avoid crossconduction.

The input logic level is compatible with 3.3V/5V/15V signal. The floating high side channel can drive a N-channel power MOSFET or IGBT up to 600V.

o tosem.

Features

- Floating channel operation up to 600V
- Robust at negative transient voltage
- Gate drive supply range from 10V to 20V
- 3.3V, 5V and 15V input logic compatible
- UVLO for both high side and low side
- Built-in 100ns dead time
- Available in SOP8 package

Applications

- H-bridge
- Inverters

Typical Application

Figure 1. Schematic Diagram

LKS: LOGO

LKSXXX: Device

X: Special code

YYWW: Year Week

Ordering Information

Part Number	Package	Package Method	Marking
	CO.DO	Таре	LKS
LKS523	SOP8	4,000 pcs/Reel	LKS523
			YYWWX

Pin Configuration and Marking Information

Figure2 : Pin configuration

Pin Definition

Pin No.	Name	Description
1	VCC	Low side and logic supply voltage
2	HIN	Logic input for high side
3	LIN	Logic input for low side
4	СОМ	Logic ground and low side driver return
5	LO	Low side driver output
6	VS	High side driver return
7	НО	High side driver output
8	VB	High side floating supply

Symbol	Parameters	Range	Units
VB	High side floating supply voltage	-0.3 ~ 625	V
Vs	High side offset voltage	$V_B-25\sim V_B+0.3$	V
V _{но}	High side driver output voltage	$V_{\rm S}$ - 0.3 ~ $V_{\rm B}$ + 0.3	V
Vcc	Low side and logic supply voltage	-0.3 ~ 25	V
VLO	Low side driver output voltage	-0.3 ~ V _{CC} + 0.3	V
Vin	Logic input voltage (HIN/ LIN)	-0.3 ~ V _{CC} + 0.3	V
dVs/dt	Allowable offset voltage slew rate	50	V/ns
Рдмах	Package power dissipation (note 2)	0.625	W
θJA	Thermal resistance, junction to ambient	200	°C/W
TJ	Junction temperature	-40 ~ 150	°C
Тѕтс	Storage temperature	-55 ~ 150	°C

Absolute Maximum Ratings (Note 1)

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. Under "recommended operating conditions" the device operation is assured, but some particular parameter may not be achieved. The electrical characteristics table defines the operation range of the device, the electrical characteristics is assured on DC and AC voltage by test program. For the parameters without minimum and maximum value in the EC table, the typical value defines the operation range, the accuracy is not guaranteed by spec.

Note 2: The maximum power dissipation decreases if temperature rise, it is decided by TJMAX, θ JA, and environment temperature (TA). The maximum power dissipation is the lower one between PDMAX = (TJMAX - TA) / θ JA and the number listed in the maximum table.

Symbol	Parameters	Range	Units
VB	High side floating supply voltage	V_{S} + 10 ~ V_{S} + 20	V
Vs	High side offset voltage	-5 ~ 600	V
V _{HO}	High side driver output voltage	$V_S \sim V_B$	V
Vcc	Low side and logic supply voltage	10 ~ 20	V
VLO	Low side driver output voltage	0 ~ V _{CC}	V
Vin	Logic input voltage (HIN/LIN)	0 ~ V _{CC}	V

Recommended Operation Conditions

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
Static Elec	Static Electrical Characteristics					
Vcc_on			8	8.5	9.8	V
Vbs_on	V_{CC} and V_{BS} under voltage rising threshold		-	8.7	10	V
Vcc_uvlo			7.2	7.6	8.8	V
Vbs_uvlo	V_{CC} and V_{BS} under voltage falling threshold		6.5	7.8	-	V
Vcc_hys			0.6	0.9	1.2	٧
V _{BS_HYS}	V_{CC} and V_{BS} under voltage hysteresis voltage		-	0.9	-	٧
Iqcc	Quiescent Vcc supply current	HIN=LIN=0V	-	50	150	uA
Iqbs	Quiescent V _{BS} supply current	HIN=LIN=0V	-	35	80	uA
Ilk	Offset supply leakage current	$V_{HO}=V_B=V_S=620V$	-	-	10	uA
VIH	Logic "1" input trigger voltage		2.4	-	-	V
VIL	Logic "0" input trigger voltage		-	-	0.6	V
IISOURCE	Logic "1" input bias current	HIN, LIN=5V	-	32	100	uA
lisink	Logic "0" input bias current	HIN, LIN=0V	-	-	1.0	uA
V _{OH}	High level output voltage	I ₀ =20mA	-	-	1.0	٧
V _{OL}	Low level output voltage	I ₀ =20mA	-	-	1.0	٧
I _{O+}	Output high short circuit pulse current	V₀=0V, VI№=5V, Pulse Width < 10uS	600	800	-	mA
lo-	Output low short circuit pulse current	V₀=15V, Vıℕ=0V, Pulse Width < 10uS	800	1200	-	mA
Dynamic Characteristics (CL=1nF)						
t _{on}	Turn-on propagation delay	Vs=0V	100	250	450	ns
t _{off}	Turn-off propagation delay	V _s =0V or 600V	80	160	300	ns
tr	Turn-on rise time		-	40	100	ns
t _f	Turn-off fall time		-	12	50	ns
DT	Dead time		40	100	250	ns
МТ	Delay match	ton&tofffor (HS-LS)	-	-	80	ns

Electrical Characteristics (Note 3) (Unless otherwise specified, V_{CC}=V_{BS}=15V and T_A=25 °C)

Note 3: The maximum and minimum parameters specified are guaranteed by test, the typical value is guaranteed by design, characterization and statistical analysis.

600V Half-Bridge Pre-Driver

Internal Block Diagram

Figure3 : Internal block diagram

Figure 4. Input/ Output Timing Diagram

Figure 5. Switching Timing Waveforms

 $\boldsymbol{\langle}$

600V Half-Bridge Pre-Driver

Typical Performance Characteristics

 $\boldsymbol{\mathcal{K}}$

600V Half-Bridge Pre-Driver

Figure 16 BV_VB&HO&VS vs. Ta

Physical Dimensions

WITH PLATING

SECTION B-B

CVMDOL	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
А	1.30	-	1.80	
A1	0.05	-	0.25	
A2	1.25	1.40	1.65	
b	0.33	-	0.51	
С	0.17	-	0.25	

600V Half-Bridge Pre-Driver

D	4.70	4.90	5.10
Е	5.80	6.00	6.20
E1	3.70	3.90	4.10
е		1.27BSC	
L	0.40	-	1.00

Revision Information

Revision	Date	Notes
Rev. 1.1	2021/01	Modify function description
Rev. 1.0	2020/12	Initial Revision

Disclaimer

LKS and LKO are registered trademarks of Linko.

Linko tries its best to ensure the accuracy and reliability of this document, but reserves the right to change, correct, enhance, modify the product and/or document at any time without prior notice. Users can obtain the latest information before placing an order.

Customers should select the appropriate Linko product for their application needs and design, validate and test your application in detail to ensure that it meets the appropriate standards and any safety, security or other requirements. The customer is solely responsible for this.

Linko hereby acknowledges that no intellectual property licenses, express or implied, are granted to Linko or to third parties.

Resale of Linko products on terms other than those set forth herein shall void any warranty warranties made by Linko for such products.

Prohibited for military use or life care and maintenance systems.

For earlier versions, please refer to this document.

